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Auxiliary-field quantum Monte Carlo calculations for the 
relativistic electron gas 

.~ M T Wilson and B L Gyorffy 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue. Bristol BS8 ITL, UK 

Received 22 August 1994. in final Form 22 December 1994 

Abstract. We have written a version of the HubbardSuatonovich tmnsformation for the m e  
of the relativistic jellium. and have developed an auxiliary-field method for performing aquantum 
Monte Carlo calculation on such a system. We have successfully applied such 3 technique to a 
system with two electrons in a repeated box, and report on the results here. Also. we comment 
on the relationship between the functional form of the above theory and F e y n m ' s  formulation 
of quantum electrodynamics, namely the relationship of the auxiliary fields to the scalar and 
vector potentials in quantum electrodynamics. We find that gauge freedom enables us to find 
an auxiliary-field representation in which all fields are real, thus in principle removing the need 
to use imaginary auxiliary fields. 

1. Introduction 

The most generally useful and reliable first-principles method for studying the electronic 
structllre of atoms, molecules and solids is density functional theory [I]. Used in conjunction 
with the local density approximation it is the only realistic way of proceeding to calculations 
involving large numbers o f  electrons. Performance of such calculations depends on 
knowledge of the energy of an homogeneous interacting electron gas (iellium) as a function 
of its density and magnetization, E(n ,  m). For crystals containing heavy atoms, the electron 
density becomes very large around the nuclei, and relativistic effects become important. 

Accurate exchange+orrelation data are available for a non-relativistic jellium, due to 
the work of Ceperley and Alder [2]. However, their diffusion Monte Carlo (DMC) method 
relies on a mathematical trick-that is, exploiting the similarity between the Schrodinger 
equation and a diffusion equation. In the case of relativistic electrons, which obey the Dirac 
equation, no such similarity exists. Hence efforts to simulate relativistic electrons using the 
DMC method must rely on introducing relativistic .corrections to the Schrodinger equation 

~ via perturbation theory. We are therefore lead into developing a new method which can 
deal with relativistic electrons exactly. 

In auxiliq-field methods we decompose the many-body problem, via the Hubbard- 
Stratonovich transformation [5], into a one-body problem integrated over all possible 
extemal fields fluctuating in space and time. This allows us to use a range of one-body 
numerical techniques, as developed for one-body electronic structure calculations, to solve 
the problem numerically. The auxiliary-field method, like many others, uses the imaginary- 
time propagator to filter out the ground state of, a Hamiltonian from a trial wavefunction 
10). that is, 

lim e-fl'lo) = (~Ol~)e-fl"'l*o) (1) 
6-m 
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where \YO} is the ground state of I? with eigenvalue Eo. In principle 1’3) can be chosen as 
any wavefunction not orthogonal to IYo). 

The auxiliary-field method has been principally used in the study of the Hubbard 
Model and other short-range interaction models [3] but can also be applied to long-range 
interactions, notably the Coulomb interaction between electrons. Silvestrelli, Baroni and 
Car [4] have developed this method for such coulombic systems in the non-relativistic case. 
Such a method, being based on the HubbardGtratonovich transformation can he in principle 
developed for any two-body Hamiltonian. Thus this method is (in principle) able to cope 
with the interacting Dirac Hamiltonian as occurring in the relativistic jellium, and provides 
some hope for determining the E(n, m) relation for densities where relativistic effects are 
important. The present work is a preliminary exploration of this possibility. 

2. A relativistic many-body Hamiltonian for jellium 

Throughout this paper we use a standard notation for relativistic quantum mechanics, that 
is: 

M T Wilson and B L G y o m  

We shall describe the relativistic jellium in a similar way to Ramana and Rajagopal 
[ 121 and MacDonald and Vosko [13], but leave out the interactions of electrons with free 
photons, to give an electron4ectron interaction only, and ignore retardation effects. We 
write the time-independent Hamiltonian as 

where +t(r )  and $(r)  are four-component electron creation and annihilation operator fields 
respectively, T(r) = qt(r)B, and A$@) is the 4-potential describing the radiation field. 
The first term represents the kinetic part and the second term describes the interactions. The 
spin indices have been suppressed for clarity. Retardation effects have been removed by 
the introduction of time-independent wavefunctions. 

The second term can be obtained by the following classical argument. We write the 
interaction between two electrons as 

c ( r ,  t )  = jlp(rr t )A&,k  t )  =  PI^ f)&d(T, t )  - j l ( r .  t )  . A d r ,  t )  (3) 
where j r  = ( P I C ,  j , )  is the &current due to electron 1 and A&, (&d/c, And) is the 
4-potential due to the presence of electron 2. This interaction is the simple sum of a 
charge-charge (Coulomb) term and a current-cunent (Breit) term. A detailed discussion 
of the origin of this interaction and the Breit term is given in [lo]; in what follows we 
will end up using a static approximation to it. Recall that the Breit term tends to zero in 
the non-relativistic limit where one recovers the a description of the usual non-relativistic 
jellium. Note also the difference in sign between the two terms; this becomes important 
when performing the Hubbard-Stratonovich transformation below. In order to find AEd, we 
note that in the Lorentz gauge, Maxwell’s equations can be written as 

0,O” A:&, t )  = hoj[(r. t )  
with the gauge constraint 

O,,A&,(r, t )  = 0 (4) 
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where 0” = ((l/c) a l a r ,  -V) is the 4-gradient. The solution to equation (4) is given by 

where A&(r, t )  is the complimentary function, so that 0, 0” Ay&, t )  = 0, with the 
constraint O,Ak(r ,  t )  = 0. These complimentary functions represent free photons and 
are ignored in the following derivation, so that we obtain an effective interaction between 
electrons only. However, they form an important part of quantum electrodynamics and so 
subtle quantum electrodynamic effects such as vacuum polarization are not treated here. We 
can now use the solution (5) to give us an effective electron-dectron interaction; 

We see that retardation is a relativistic effect and goes to zero in the non-relativistic limit. 
In order to be able to handle the Hamiltonian conveniently in the Hubbard4tratonovich 
transformation we require that the two 4-currents be measured at the same, time; thus we 
drop the retardation effect, and hence leave the pair interaction in this approximation as 

where u(r - r’) = e2/4ne& - r’) and j r ( r ,  t )  = ec&(r. t)yK@;(r, t ) ,  The effect of the 
retardation term is of order @: (where @F = hkF/mC), and so is of the same order in @F 
as the leading corrections to the non-relativistic result due to relativity: hence, in general, 
it cannot be neglected. Nevertheless, in the present initial exploration of the theory we 
shall not deal with the extra complications its retention would involve. If we assume time 
independence in the wavefunctions, we can further write $(r. t) = $(r )  and so ignore all 
time-varying effects altogether. 

Having obtained this effective pair interaction (7) we can now second quantize the 
interaction given in equation (2) .  Using *(r )  = xi @i(r)ci and *t (r )  = xi $!(r)c! we 
obtain the many-body Hamiltonian 

+‘-cl,, d’r d3r’ &(r)yK$k(r)u(r - r‘)~j(r’)y”$i(r’)c~cjt9ck (8 )  
i jk i  

where the indices i ,  j ,  k ,  I contain both space and spin degrees of freedom implicitly. The 
interaction term is now exact if we consider a static distribution of charge. The Hamiltonian 
is of the required usual two-body form; 

1 

i j  i jki  

3. HubbardStratonovich transformation (HST) 

From here onwards, where there is no confusion, we will use the summation convention for 
summing over repeated indices. Central to our arguments is the well known [5] functional 
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integral representation of the density matrix: 

M T Wilson and B L Gyo* 

which reduces the two-body interaction to a one-body term at the expense of introducing 
time-dependent auxiliary fields u;&) over which we must perform a functional integral. 
We have removed a self-energy term which cancels in all physical observables [7]. If P 
has no spin dependence, and is a central potential, the above expression reduces to 

] df). (11) 

B 
,-BA = /Du(r, t )  exp (k 1, d'r d'r' J=ou(~, f)u(r - r')u(r', t )  dt 

x exp (- 1' [T(r. r')cJcrj - d'r' u(r - r')u(r', t)cjc, 
,=O 

Depending on whether P is positive definite or negative definite, we must pick u(r, t )  as 
pure imaginary or pure real respectively, so that the functional integral converges. To apply 
the propagator we must split the timedependent evolution operator into time slices, and 
apply a kinetic and potential propagation at each time slice. 

In order to use the above transformation we must choose an appropriate basis set for 
the 4, (r, E )  wavefunctions. It is natural to use the plane-wave Dirac spinors for the kinetic 
part and localized delta-function wavefunctions for the potential part. Thus we split the 
one-electron evolution operator of (10) into Trotter time slices of length AT, in the form 

f i ( U )  fi(UN)...fi(UI) 

where N AT = p .  We now introduce the basis sets. 
For the kinetic part, we use the free Dirac spinors; 

with 

and 

n=((Y A),( p ; i ) , (  0 1 -1 O )) 
There are a total of four spin states possible. These are the free-electron spinors, solutions 
to the non-interacting D i m  problem. We have normalized the spinors covariantly, but for 
numerical calculations the normalization is, in fact, arbitrary. 

Thus 
t 

Tija,taj = e..r,ai.,jai.sj 
I..<; 

where 

qS, = f(B2cZk: + m2c4)"2 (14) 
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and so the kinetic term is diagonal. To avoid later confusion we replace c and ct by a and 
 ut^ when we are dealing with the free-electron creation and annihilation operators, as in the 
kinetic energy case here. 

For the potential part, consider the basis set 

for si =.P, $, T ,  5 respectively. 

obtain: 
Substituting these into the expression for f v i j ~ r c ~ c ~ c ~ c ~  from equations (8) and (9), we 

1 )/” = l o o - 1  0 1  
0 I o 1  0 0 1  

-1 0 0 
\ o  0 0 -1)  /’=I: -1 0 O 0 0  O J  

/ 0 0 0 - i \  / o  0 1  o \  

we find that we can can rewrite what remains in equation (16) as 
A 1  
V = l,, d3r d3r’ [+;&)U@ - r’)bc(r’) - ,&(r)u(r - r’)&(r’) 

+by(r)u(r - r‘)by(r’) - b&+)u(r - r‘)bz(r‘)l. 

The point of these transformations is that the above form enables us to perform a HST as 
defined in equation (1 1) on each of the four parts of the potential, as follows. 

(18) 
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We introduce a separate auxiliary field u(r) to couple to each 8. For convergence of 
the functional integral we must use an imaginary version of the HST for ,& and by. but a 
real HST for & and Putting all this together using equations (ll), (12), (14) and (IS), 
we obtain the functional integral 

x exp [-AT (iuuc(t),?c - vux(t),& + iuuy(t)by - vu,(t),i?J] 

where we have suppressed all integrals where possible and used the notation 

uui(r)ji = 1, d’r d’r’ u(r - r’)uj(r’, t)ji(r) 

and 
B 

G(ui) = exp ( -5  le d3r dr’ l=ouj(r ,  r)u(r - r’)ui(r‘, f )  dt ) . (19) 

4. Interpretation of the auxiliary fields 

The auxiliary fields which appear in Hubbard$tratonovich transformations are purely 
mathematical constructions whose sole role is to facilitate a convenient integral represenation 
of operator functions. In what follows we show that the above four fields are closely related 
to the electromagnetic fields generated by the moving charges of the model. 

Writing out a single time slice of the potential part of the one-electron propagator using 
equations (17) and (19) gives us 

&(U,. ox, uz) = exp (-AT (Uu)si~~(r)C?;CJt(r)) 
where 

0 

0 
We see that this is simply 

exp (-Ar (ivucIs~.vi - arjSi .vu) ci,csk) (21) 
We can now compare this to a single-particle Dmc where vu = (vuJ, vuy, vuz). 

Hamiltonian f i ~  in the presence of scalar and vector potentials. Writing 

& = (-ichol. V + gmc2 - eca  . A + e6) 
gives us 

exp(-As f i ~ )  = exp(-(-icha. V + gmc2)Ar)exp(-(e@I - e m .  A)AT). (22) 
Hence we can immediately see the interpretation of the external fields as fields due to the 
scalar and vector potentials. The first term in equation (21) is the straightforward Coulomb 
propagation in an imagin6ry field. We see that vuc represents a scalar potential, &(r, t ) .  
The second term is a ‘current’ propagation, and the components of the field vu represent 
components of a vector potential (times the speed of light,) ecA(r,t). Thus we have 
recovered a term in the propagator of similar form to jpAf i ,  albeit with the scalar potential 
having an imaginary value. The presence of this imaginary field can be traced back to the 
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relativistic metric; normally the Coulomb part enters with the opposite sign to the Breit part. 
Thus this representation suffers from the fact that the singletime-step propagator C(q) is 
not a Hermitian operator, and so in general we are not able to apply the techniques of 
Hermitian matrices. 

Prompted by the above observation we are lead to an attempt to interpret the argument 
of the gaussian weight as the energy of free fields. To do this we note that the gaussian 
weight term G(uJ looks like 

1 B 
--ucvuc -f l, d3r~d3r’ L u C ( r ,  r )v (r  - r’)uc(r‘, t )  dt 

2 
which can be written as 

(23) 
1 

uu&; ~)U-’(S.S‘)UU~(S‘. i) dt 

where vu&, t) is defined as in equation (19) and u- ’ (s ,  s’) is the inverse operator of u(s ,  s‘). 
Now, considering the identity 

we have 

Writing the argument of the gaussi& weight as in equation (23) we see that schematically 
it i s  of the form 

1 1 --E0 -Tucuuc = --uuc ~2 (.) v:uu, 

which on integrating by parts may be rewritten as 
1 €0 -ucuuc =~-lvr(uuc)l’. 
2 2e’ 

Thus by putting iuuc 
the quantum electrodynamics (QED) expression below. 

for the term exp((i/&) 1 L d3r dt), where L is the Lagrangian density, is given by [6]  

S = exp ((i/A) 1 L d’r dt) 

e@ we see that this is just i -(60/2)IV,@1’ term that appears in  

Recall now~that in the Lorentz gauge the Feynman formulation of the QED expression 

Performing a Wick rotation to imaginary time, (iT/& = p, it/h = T) we obtain 
z = exu(-BI;I) 
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where the 'i' comes from making the scalar potential @ imaginary in order to make the 
integral converge. We thus see the direct similarity between the one-electron propagator 
term in the HsT (20) and the j - A  - ipq5 term in QED, and the gaussian term in the HST and 
the (€,$.)lVq51* term in QED. We note however that the HST produces no terms equivalent 
to the 4 and A terms that are present in the QED formulation. Clearly this is the consequence 
of neglecting the effects of retardation. Although our Hamiltonian does not contain effects 
such as vacuum polarization, we see that nonetheless the HST gives very similar physics 
to QED. It is likely that if effects such as retardation and free photons are included in our 
Hamiltonian (8) then full QED could be recovered. However, numerical work with such a 
functional representation would not be so straight forward, so this possibility has not been 
explored. 

It is easy LO show that making the time-independent saddle point approximation to the 
functional integral in equation (19) yields the relativistic analogue to the Hartree equations- 
that is, the self-consistent set of single-particle Dirac equations 

M T WIson and B L Gyolffy 

c-icfia . v + pmc2 + e 4  - e m .  A)& = 8 ) @ k  

where the Cpotential is given by 

Also, we find that by considering second-order fluctuations about the saddle point of the 
functional integral we obtain the relativistic equivalent of the random phase approximation 
(RPA), in an exactly analogous way tothat followed in the non-relativistic case 1141. 

Having identified the auxiliary fields with the scalar and vector potentials, we see that 
there is a natural way to add in the effects of external potentials @"'(r) and Aex'(r), by 
simply adding e@"'(r) to iuac(r, t )  and ecA"'(r) to vu(r, t )  in the one-electron propagator. 

5. Monte Carlo calculation of ground state energy 

Non-relativistically, following Sugiyama and Koonin [7], we use the usual projection 
operator e-pB and operate it on a trial wavefunction IQ). Then it is easy to show that 

We must adapt this relativistically, because of the presence of negative energy states. Thus 
we consider the operation i(e-@ri), where the f'-operator removes all negative energy 
states. This is equivalent to requiring that all negative energy states remain filled. Then, 

Potentially there is a numerical problem here, since as 6 increases the negative energy 
states will grow and swamp the positive ones in which we are interested. However, in our 
calculations we find that we can still extract the positive states without problem. For the 
numerical simulations, it is in fact more convenient to consider a symmetric form of (32), 
that is, 
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and operate the time evolution operator for time p/Z on each side of the determinant. 
We can now apply the relativistic HST as in equation (19). This gives us a one-electron 

problem with four auxiliary fields. We choose as a trial determinant an antisymmehc 
combination of solutions of the free Dirac equation, given by (13). To propagate these, we 
perform the kinentic energy part of the propagation in reciprocal space, and the potential 
energy part in real space. We can move between the two bases easily by the fast Fourier 
transform. The kinetic part is s imp lewe  just write every one-electron wavefunction as a 
sum of solutions of the free Dirac equation, and propagate each by its eigenvalue before 
combining them back together. To do the potential part, we need to be able to deal with 
the matrix ua(r) in equation (20) at every point in real space. To do this we split it into 
its anti-Hermitian and Hermitian parts: 

/ iuu, 0 -uuz --vu, + iua, ) 

0 I 0 iuu, -uax - iua, 
-uax + iuas iuac ( u a )  ( r )  

0 iua, ) 
iuac 0 0 0 
0 iuuc 0 

0 0 uo; ua, - iuay 
0 ua, + iua,. 

(34) 0 
0 

u q  - iuay  0 
uax + iuu, -uaz 0 

The first (anti-Hermitian) part is simple to propagate with, since it is diagonal. This part 
is equivalent to the usual imaginary-field propagation in the non-relativistic method of 
Silvestrelli, Baroni‘ and Car [4]. The second (Hermitian) part is more difficult; to perform 
it we need to know the eigenstates of the Hermitian matrix in equation (34). 

(4: + q: + q:)”’, we find that the normalized eigenvectors 
of the Hermitian part of equation (34) are given by 

Writing qi = vu] and 141 

with the corresponding eigenvalues E I  = ~4 = +iq1. EZ = E? = -141. Hence we 
can perform the Breit (Hermitian) part of the propagation by writing the four-component 
wavefunction at every point in space in terms of these eigenvectors, and propagating with 
the corresponding eigenvalue. 

For sampling the auxiliary a-fields we use a technique similar to that of Silvestrelli 
er al [4]. Defining G(u) by equation (U), G(uj) by equation (19) and writing G(u) = 



where we also have removed the negative energy states as in equation (33). Applying the 
HST to e-Pfias given in equation (19) and substituting in (33) gives us 

We see that from (37) we can now apply a Metropolis technique [SI to evaluate this ratio, 
where the probability distribution is given by G(u)ID(u)I. We have the usual auxiliary- 
field sign problem, since if (S(u)) % 0, when we average in the G(u)lD(u)l probability 
distribution the value of EO will have a large statistical error. 

We pick u-fields from the gaussian distribution by using the Box-Muller method [14]. 
We then can propagate the trial determinant by these fields as in equations (12) and (19) in 
order to find D(u) .  and carry out a Metropolis ratio test on ID(.)[ so that we successfully 
sample the probability distribution p ( u )  = G(u)lD(u)l .  

As matters of technical details we record that we use periodic boundary conditions on 
a box of length L (S2 = L’) and expand everything in terms of its Fourier components. 
Thus, the l/r-potential for jellium becomes inside the box 

where 

(38) 

and we sum over all Fourier components except the constant (g = 0) term, since this is 
removed by the positive background in jellium. We impose a cut-off in the numbers of 
Fourier components considered; in the case of the following calculations we have used 
27 (= 3’), 125 (= 5’) or 343 (= 7’) components. 

Calculations were performed on a CRAY Y-MP8 supercomputer. However, the heavy 
computational workload means that we are limited to small numbers of electrons-in this 
case two only (one spin ‘up’, the other spin ‘down’). 

2x 
L g = - ( n , , n , . n , )  nI,,ns.,n,EZ 

For the numerical calculations we have used atomic units (au) chosen such that 

e2 
4Z€O 

c =  1 - ~- ~- 1 1 
h2 
m 
- =  

so that 

where a0 and R, are the Bohr radius and Rydberg constant respectively. 
We have illustrated the method with a calculation for a two-electron repeated jellium 

system at a density of r, = 0.0140 au where r, is given by the radius of the sphere that 
on average contains one electron, that is $r;‘ = Q/N. Such an electron density has a 
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Fermi velocity corresponding to & = U F / C  = fikF/mc = 1 so is well into the relativistic 
rkgime. We have chosen to consider up to 343 Fourier components for the wavefunctions 
and n-fields, and have used Trotter time slices of length 2.5 x au. 
We have chosen a trial wavefunction of an ’up’ and a. ‘down’ electron situated at the r 
point in reciprocal space. We have carried out calculations for both the non-relativistic and 
relativistic jellium. The results are presented below in figures 1 and 2 for the basis sets of 
343 and 125 plane waves respectively, in the form of a plot of energy per parficle (minus 
rest-mass energy) as given by equation (33) against 0. In these figures it is easy to see~the 
extent of the statistical error. In fact this error is almost entirely due to the fluctuations in 
E ( u )  as defined in equation (36) since the average sign is very close to 1 for the whole 
range of p used. 

au and 5’x 

Non-relativistic exact result 

Non Relativistic Calculation w-+ 
Relativistic Calculation - 

-10 exact NR result 

I 
- 2 0  ....... I ’  
-30 t * 

T 

-70 

rs=0.0140 343 plane waves 

-80 1 
0 1 2 3 4 5 G 

1 O A 5  Beta /ail 

Figure 1. AFQMC calculations of carrelation energy Ec against 6 for a two-electron system at 
density r, = 0.0140. using a basis set of 343 plane waves. The 4-field representation of equation 
(19) is used for the relatiVistic case, and the 1-field representation in equation (11) is used for 
the non-relativistic case. Az = 2.5 x for 
the non-relativistic case. 

for the relativistic case. and A7 = 5.0 x 

In order to interpret our results we should like to be able to compare the relativistic 
correlation energy with the non-relativistic correlation energy at the same value of r,. In 
the case of iwo non-relativistic electrons, we are able to solve the Schrodinger equation 
numerically by writing 

and making the standard substitution R = rl + r2.r = rI - r2, Y(r1, rz) = 4 ( R ) $ ( r )  to 
give 
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which is now separable. Numerical calculation of the solution to the r-part of this equation 
leads to the 'exact' non-relativistic result. In figure 1 we show the exact result as calculated 
in this way for r, = 0.0140 au, and also an equivalent non-relativistic auxiliary-field quantum 
Monte Carlo calculation using the technique of Silvestrelli eta! 141, for a basis set containing 
343 plane waves. Unfortunately, such separation of variables does not occur in the case of 
the Dirac equation and hence we only have our Monte Carlo results to rely on. 

-70 

6. Exploiting gauge freedom 

Having identified the auxiliary fields with the scalar and vector potentials, we can exploit 
gauge freedom to find a new representation, in particular one in which the auxiliary fields 
are real. 

In the propagator fi(u), as defined in equations (12) and (19), the effect of iw&, t )  
is identical to that of a scalar potential e@@, t ) ,  and that of the field vcr(r,t) = 
(vux(r, t ) .  uu,.(r. t ) .  vu,@, t ) )  is identical to that of a vector potential ecA(r,  t ) .  Hence 
we can choose another scalar and vector potential pair which give rise to the same E- and 
B-fields and so will have an identical effect in the real-time calculation of the wavefunction. 
In general, we can write such a gauge transformation as 

- r s d . 0 1 4 0 a u  125 plane waves 

where x(r, t )  is m y  scalar function in space and time. This allows us to make the choice 

x(r, t )  = 1' @"'d(r, r') dt' 
t'=O 
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so that 
1 

@"""(r, t) = 0 A""@, t) = A"Id(r, t) + / Vq4'ld(r, t') dt'. (42) 

Hence we have eliminated the scalar potential term in the propagator, in favour of an addition 
to the vector potential. It is important to realize that t in the above is real time. To find the 
representation in imaginary time (i.e. the density matrix) of exp(-ikT/h) we must perform 
a Wick rotation, that is f i  = iTfh, r = it/h. Thus afat = (ar/at) alar = (ifh) a fa r  in 
imaginary time and so 

(43) r$ (r, r )  = ~ q 4  (r.5) - -~ 

Hence eliminating an img inur j  q4 in the imaginiuy time propagator requires a real x (r, r ) ,  
and so leads to a real Anew. Thus we are able to find a representation which uses real fields 
only. 

*'=O 

Ane"(r. r )  = A0Id(r, r )  + Vx(r ,  r ) .  new old i ax@, 5) 

A ar 

Formally, we write the real-time evolution operator as 

where are defined in equation (17) and 

bju,i;(t) k d3r d3r' A(r, t)u(r - r'),i;(r', t ) .  

We can now apply the usual relativistic HST given in equation (19) to give 
~~ 

DuC Do; Dur Duz ~ ( u c ) ~ ( u z ) ~ ( u , . ) ~ ( u z )  

where 
T 

G(u;) ~ e x p  (-i;l, ,d3r d'r' ~=ou j ( r , t )u ( r  -r')uj(r',t) dr 

Now identifying iuuc =~e,#Pld, uuJ s ecA;Id, uur 
gauge transformation (42) we obtain 

u q  ecA;ld and applying the 

e-('/*)" = ~ o ;  DO; ~ o ;  D U ~  G(oc)G(ux)G(uy)G(uz) s 
1 +i [uuy(t) + c l* ;i; a .  iuu&') dt' By 

On performing the Wick rotation, 6 = iT/h, r = it& r' = it'/fi, this leads us to the 
representation of the density matrix as 

Due DcX DuY DuZ G(u~)G(u~)G(u~)G(u~) 
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We denote the one-electron propagator in equation (47) by $(U). We see that the scalar 
potential (&-term) has been eliminated and that the effective vector potential is real. This is 
beneficial because it removes some of the problems associated with an imaginary auxiliary 
field. 

The non-relativistic generalization of this relativistic @ = 0 representation of the electric 
and magnetic fields is actually equivalent to the representation used in the non-relativistic 
case by Chang [ 111. Although using the above representation leads to a single-electron 
propagator $(U) which contains a real 4-potential, the properties of such a representation 
do not appear to be as convenient as the simple 4-field case described earlier in section 
3 when we perform numerical calculations. In particular, the size of the correction to the 
vector potential in equation (42), given by 

A’@, t )  = 1 V4(r ,  t’) dt’ 
t’=O 

grows as N‘l z  with increasing number of Trotter time steps N, and hence increases in 
magnitude with increasing time. Also, since V ik in reciprocal space, the V @  term in 
equation (47) means that the coefficients of the large Fourier components of 4 are enhanced 
compared to the coefficients of the smaller Fourier components, leading to new fields which 
oscillate more quickly in space than the fields in the 4-field representation given in equation 
(19). Such a problem indicates that we may have to take a very large number of plane-wave 
coefficients for our wavefunctions before we achieve convergence of E ( p )  with increasing 
number of plane waves. In fact, attempts at numerical calculations using the projection 
method described in equations (31)-(33) show that we do indeed face such problems when 
working numerically in the @ = 0 gauge. Numerical results for such a representation 
are recorded in figures 3 and 4 for basis sets of 343 plane waves and 125 plane waves 
respectively. The results are similar to those in figures 1 and 2 for the &field gauge. 

Because of the fom of E @ )  given in equation (33) we can expect a curve of the form 
E ( p )  = n( l  - e-”#), where a and b are constants (i.e. an exponential decay,) to fit the 
data at large enough 0. In this way we can hope to extrapolate the results to @ = CO in 
a meaningful way. Indeed, for a basis set of just 27 plane waves, the error bars are small 
enough to allow a least-squares fit of this form to the data. These results are given in 
figure 5, and show that the extrapolated values of E ( p )  as B -+ 00 are similar for both the 
4-field (equation (19)) and 4 = 0 (equation (47)) gauges described above. The discrepancy 
between the two graphs can be put down to the small number of plane waves used. For 
one particular point we have briefly investigated the convergence of E ( p )  with AT.  In 
fact we find that the value of Az  chosen for the graph is indeed small enough for any 
errors due to its non-zero size to be smaller than the statistical errors obtained in the AFQMC 
calculation. Unfortunately, increasing the number of plane waves used in the basis set leads 
to an increase in the statistical fluctuations as illustrated in figures 1 to 4. Hence a such a 
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Figure 3. Relativistic AFQMC calculations of correlation energy Ec against p for a two- 
electron system al density r, = 0.0140, using P basis set of 343 plane waves and the real-field 
rrpresenution in equation (47). A7 = 2.5 x IOm6. 
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Figuk 4. Relativistic AFQMC calculations of correlation energy E, against p far a ,two- 
electron system at density r, = 0.0140. using a basis set of 125 plane waves and the real-field 
repnsentation in equation (47). AT = 2.5 x W6. 

~ direct comparison of the two gauges is not possible for a system described by more plane ~ 

waves. Nevertheless, the results suggest that within the statistical error the two different 
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7. Discussion and conclusions 

Firstly we wish to comment on the significance of the numerical results. We clearly see 
from figure 1 that the non-relativistic and relativistic cases produce different results, with 
the addition of relativity significantly lowering the ground-state energy. Statistical errors, 
however, are large, and although both curves are beginning to tend to limits, in the relativistic 
case there is a large degree of uncertainty. Calculations were performed for up to (typically) 
5000 o-fields per point on the graph. The Monte Carlo acceptance rate was large in all 
cases, being indicative of the small value of r, at which we are working. Calculations took 
typically a few CRAY hours per point on the graphs. The Monte Carlo acceptance rate was 
very close to unity for all the points, suggesting that a better way of sampling the fields 
exists. This possibility has no1 yet been explored. 

We can compare these results with those of Ramana and Rajagopal [9], who have 
calculated exchangecorrelation energies for jellium using a ring-diagram approximation. 
They obtain the result cc = -280 x IO-? au, which compares with our Monte Carlo value 
of = -25(*5) x au (for 343 plane waves,) where is the correlation energy per 
particle. We see that we have recovered only of the order of one tenth the correlation of a 
proper jellium by using our repeated two-electron jellium. We believe that this is principally 
a size effect, namely we would require many more elec&ons in order to obtain a sensible 
value; at the present time this is not feasible due to the computer expense involved. 

Secondly, we observe that the case of the fermion sign problem is more serious  than^ 
in the non-relativistic case. Since the correlations of the system increase as r, is increased 
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we expect the auxiliary-field method to perform less well at higher rv. due to the larger 
fluctuations in the o-field needed to take into account the correlations. In fact, we find 
that this is the case. However, the onset of the sign problem occurs at much smaller r, for 
the relativistic case than for the non-relativistic case. Indeed, for r, = 4 (where relativistic 
effects would be negligible) the relativistic method is unable to produce any meaningful 
result due to the fermion sign problem, whereas the non-relativistic method works well. This 
effect must be due to the presence of the three ‘vector potential’-like fields, ax, cy, o;, 
whose net effect must average to zero in the non-relativistic rigime but  in fact produce 
large fluctuatons. 

In short, we have generalized the HST to the relativistic c a e  and have applied it in 
a Monte Carlo calculation to a two-electron jellium system. Such a method is implicitly 
exact, and removes the need for perturbation theory approximations, but is computationally 
expensive. However, we have discovered that the HST provides a very natural representation 
for the density matrix operator exp(--gH), closely related to Feynman’s formulation of QED. 
This suggests that a search for more convenient auxiliary fields is unlikely to be successful. 
We have found that gauge freedom allows us to generate any number of different auxiliary- 
field representations. In particular, we have shown how the problematic imaginary scalar 
field arising from the natural 4-field representation of the density matrix can be eliminated 
in favour of a real vector field. 
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