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Auxiliary-field quantum Monte Carlo calculations for the
relativistic electron gas
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Received 22 Aungust 1994, in final form 22 December 1994

Abstract. We have written a version of the Hubbard—Stratonovich transformation for the case
of the relativistic jellium, and have developed an auxiliary-field method for performing a quantiam
Monte Carlo calculation on such a system. We have successfully applied such a technique to a
system with two electrons in a repeated box, and report on the results here. Also, we comment
on the relationship between the functional form of the above theory and Feynman’s formulation
of quantum electrodynamics, namely the relationship of the auxiliary fields to the scalar and
vector potentials in quantum electrodynamics, We find that gauge freedom enables us to find
an auxiliary-field representation in which aff fields are real, thus in principle removing the need
to use imaginary auxiliary fields.

1. Introduction

The most generally useful and reliable first-principles method for studying the electronic
structure of atoms, molecules and solids is density functional theory [1). Used in conjunction
with the local density approximation it is the only realistic way of proceeding to calculations
involving large numbers of electrons. Performance of such calculations depends on
knowledge of the energy of an homogeneous interacting electron gas (jellium) as a function
of its density and magnetization, E(n, m). For crystals containing heavy atoms, the electron
density becomes very large around the nuclei, and relativistic effects become important.

. Accurate exchange—correlation data are available for a non-relativistic jellium, due to
the work of Ceperley and Alder [2]. However, their diffusion Monte Carlo (DMC) method
relies on a mathematical trick—that is, exploiting the similarity between the Schrddinger
equation and a diffusion equation. In the case of relativistic electrons, which obey the Dirac
equation, no such similarity exists. Hence efforts to simulate relativistic electrons using the
DMC method must rely on introducing relativistic .corrections to the Schridinger equation

* via perturbation theory. We are therefore lead into developing a new method which can

deal with relativistic clectrons exactly. '

In auxiliary-field methods we decompose the many-body problem, via the Hubbard~
Stratonovich transformation [5], into a one-body problem integrated over all possible
external fields fluctuating in space and time. This allows us to use a range of one-body
numerical techniques, as developed for one-body electronic structure calculations, to solve
the problem numerically. The auxiliary-field method, like many others, uses the imaginary-
time propagator to filter out the ground state of a Hamiltonian from a trial wavefunction
|), that is,
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1566 M T Wilson and B L Gyorffy

where ¥} is the ground state of H with eigenvalue Ey. In principle |$) can be chosen as
any wavefunction not orthogonal to {\¥).

The auxiliary-field method has been principally used in the study of the Hubbard
Model and other short-range interaction models [3] but can also be applied to long-range
interactions, notably the Coulomb interaction between electrons, Silvestrelli, Baroni and
Car [4] have developed this method for such coulombic systems in the non-relativistic case.
Such a method, being based on the Hubbard—-Stratonovich transformation can be in principle
developed for any two-body Hamiltonian. Thus this method is (in principle) able to cope
with the interacting Dirac Hamiltonian as occurring in the relativistic jellium, and provides
some hope for determining the E(xn, m) relation for densities where relativistic effects are
important. The present work is a preliminary exploration of this possibility.

2. A relativistic many-body Hamiltonian for jellium

Throughout this paper we use a standard notation for relativistic quantum mechanics, that

182
ﬁ=(£ _OI) a=(2‘5) y* = (8, Bo0)

= ((76)-C )0 %)

We shall describe the relativistic jellium in a similar way to Ramana and Rajagopal
[12] and MacDonald and Vosko [13], but leave out the interactions of electrons with free
photons, to give an electron—electron interaction only, and ignore retardation effects. We
write' the time-independent Hamiltonian as

A= f &r v () (—~icha - V + BmcHY () + f d*r ec TNy (r) AL, (r) (2)

whete ¥1(r) and ¥ (r) are four-component electron creation and annihilation operator fields
respectively, ¥(r) = ¥1(r)8, and A%, (r) is the 4-potential describing the radiation field.
The first term represents the kinetic part and the second term describes the interactions. The
spin indices have been suppressed for clarity. Retardation effects have been removed by
the introduction of time-independent wavefunctions.

The second term can be obtained by the following classical argument. We write the
interaction between two electrons as

V(r, 0) = jinlr AL 1) = ;i@ D¢ralr, ) = G101, 1) - Ara(r, 1) €y
where jI = (pic, §1) is the 4-current due to electron 1 and A%y = ($ra/c, Awq) is the
4-potential due to the presence of electron 2. This interaction is the simple sum of a
charge—charge (Coulomb) term and a current—current (Breit) term. A detailed discussion
of the origin of this interaction and the Breit term is given in [10]; in what follows we
will end up using a static approximation to it. Recall that the Breit term tends to zero in
the non-relativistic limit where one recovers the a description of the usual non-relativistic
jellium. Note also the difference in sign between the two terms; this becomes important
when performing the Hubbard—Stratonovich transformation below. In order to find AL, we
note that in the Lorentz gauge, Maxwell’s equations can be written as

O, 0¥ ALy, 1) = oy (1)
with the gauge constraint
O, ALy =0 'eH)
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where ¥ = ((1/c) 8/8¢, — V) is the 4-gradient. The solution to equation (4) is given by

3.0 2 t“-lf—rl/C) P
Al =22 = f &r T + AL D) 5)

where Af,(r,t) is the complimentary function, so that (I, O A% (r,#} = 0, with the
constraint D uAb..(r, ) = 0. These complimentary functions represent free photons and
are ignored in the following derivation, so that we obtain an effective interaction between
electrons only. However, they form an important part of quantum electrodynamics and so
subtle quantum electrodynamic effects such as vacuwm polarization are not ireated here, We
can now use the solution (5) to give us an effective electron—eleciron interaction;

Vir, 1) = fd”i . Juulr r)h'u?:_t;l Ir—=r' ]/c) . (6)

We see that retardation is a relativistic effect and goes to zero in the non-relativistic limit.
In order to be able to handle the Hamiltonian conveniently in the Hubbard—Stratonovich
transformation we require that the two 4-currents be measured at the same time; thus we
drop the retardation effect, and hence leave the pair interaction in this approximation as

Vo =42 f gy DRCD

lr—r|
= f , &r' P10, yudi(r, £) vir — 1) G0, Dy Pa(r', 1) N

where i(r — 1) = e*/4neplr — r') and P (r, 1) = ecg;(r. t)y*¢;(r. t). The effect of the
retardation term is of order B2 (where S = fikp/mc), and so is of the same order in B¢
as the leading corrections to the non-relativistic result due to relativity; hence, in general,
it cannot be neglected. Nevertheless, in the present initial exploration of the theory we
shall not deal with the extra complications its retention would involve. If we assume time
independence in the wavefunctions, we can further write ¢(r.t) = ¢{r) and so ignore all
time-varying effects altogether.

Having cbtained this effective pair interaction (7) we can now second quantize the
interaction given in equation (2). Using ¥(r) = 3, ¢:i(r)c; and ¥ (r) = ¥, ¢f(r)c;r we
obtain the many-body Hamiltonian

A=y f Er Fy(r)(—ichy - V + meAg;()elc;
ifovr

j & Er' Wt — 8, W e ae 8

z_;k!

where the indices #, j, k, I contain both space and spin degrees of freedom implicitly. The
interaction term is now exact if we consider a static distribution of charge. The Hamiltonian
is of the required usual two-body form;

A= ZTEJC,C,--P ZVUMCCC!C;: 9
uki

3. Hubbard-Stratonovich transformation (HsST)

From here onwards, where there is no confusion, we will use the summation convention for
summing over repeated indices. Central to our arguments is the well known [5] functional



1568 M T Wilson and B L Gyorffy

integral representation of the density matrix:
-gH 1 [*
e F = fDO':k(I) exp 5[ ocmc(f) Vismop(t) dt
2=

]
xwp(—j'(nr—wmqmnnkkw) {10)
=0

which reduces the two-body interaction to a one-body term at the expense of introducing
time-dependent auxiliary fields oy(r) over which we must perform a functional integral.
We have removed a self-energy term which cancels in all physical observables [7], If V
has no spin dependence, and is a central potential, the above expression reduces to

- )
e~ FH = f Do(r, 1) exp (-;— f d*r a3 f olr,Dv(r — e, 1) dt)
nr =0

B
X exp (—f [T(r, reles — f &Er' vlr — o, t)cic,:l dt) . {1
=0 r

Depending on whether V is positive definite or negative definite, we must pick o (r, £) as
pure imaginary or pure real respectively, so that the functional integral converges. To apply
the propagator we must split the time-dependent evolution operator into time slices, and
apply a kinetic and potential propagation at each time slice.

In order to use the above transformation we must choose an appropriate basis set for
the ¢, (r, £) wavefunctions. It is natural to use the plane-wave Dirac spinors for the kinetic
part and localized delta~-function wavefunctions for the potential part. Thus we split the
one-electron evolution operator of (10) into Trotter time slices of length A<, in the form

U@)=TUlow)---U(on)
N
= H exp (—I}kcgck Ar) exp (+V,-jk;o;-;(n)cfck Ar) + O(ATY) (12)
n=1

where N At = 5. We now introduce the basis sets.
For the kinetic part, we use the free Dirac spinors;

I x® Ei, +mc*\'?
di(r) = exp(lk,-r)( {heok; J(Ex, +me?))x©® ) (—2mc2 )

with

= ( (I) ) or ( ? ) E} =n2cH? + mct

(3D 310 5)

There are a total of four spin states possible. These are the free-electron spinors, solutions
to the non-interacting Dirac problem. We have normalized the spinors covariantly, but for
numerical calculations the normalization is, in fact, arbitrary.

Thus

and

P 1
Lijaia = ) €isa;  diy,

£.5;
where
€.y = £RECKE +mich)? (14)
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and so the kinetic term is diagomal. To avoid later confusion we replace ¢ and ¢f by @ and
a'-when we are dealing with the free-electron creation and annihilation operators, as in the
kinetic energy case here.

For the potential part, consider the basis set

¢1‘(r1 'E) = 5(!’ - ri) Xs,(‘f)

where

(15)

QO =, O
[ = ]
O OO

1
10

Xs,- = 0 1
0

for s; =1, 4, . 1 respectively.
Substituting these into the expression for %Vi jk;c}‘c}?c;ck from equations (8} and (9), we
obtain:

V= % f Pr @ v — VM0 (e el ()eq ()
where
My = 3 X EBvule £0X B0 ) X ENBY* & DX E)
£ifk &i& -
=X, VMXSkYS, Y“Xsf . (16)

Most of the elements Mj,,,» are zero. Making the following definitions:
pelr) = el (Yer (r) + e} ey () + eLrex(r) + elriep(r)
Per) = hrIes () + chraey () — | (Ieg ) — chrdey ()
pe(r) = h(Nep(r) + ke, (r) + e} (Iep () + cHrer(r)

By(r) = cLO)ep(r) + chir)ey(r) — | (eg(r) — ey ()

an

and using the representation

10 0 0 0 0 0.1
o o1 0 o il o o 10
Y~loo -1 o Y=l 0 -1 0 0
00 0 -1 -1 0 00
0 0 0 —i 0 01 0
. [ o o0oi o s | o 00 1
=1 0 i 0 o =1 1t 00 0
- 00 0 0 10 0

we find that we can can rewrite what remains in equation (16) as

PO |

V=>s f Er Er [+l — FB(r) — Belr)vlr — )3 ()
rr'

B =B () = B yolr — r) AN (18)

The point of these transformations is that the above form enables us to perform a HST as
defined in equation (11) on each of the four parts of the potential, as follows.
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‘We introduce a separate auxiliary field o (r) to couple to each 4. For convergence of
the functional integral we must use an imaginary version of the HST for 5; and gy, but a
real HST for 3, and g,. Puiting all this together using equations (11), (12), (14) and (18),
we obtain the functional integral

. N
o—PA f Do, Do, Do, Do, G(o:)G(ex)G(0,)G(o) | [ exp (—At (ea“a))
t=1

X exp [—Ar (ivac(t)ﬁc — v, () + ive, () — vo, (r)ﬁz)]

where we have suppressed all integrals where possible and used the notation
o (1)5; = f &Er & v(r — o (r, 05 (r)
rr’

and

g
G(o;) = exp (__;_ f ) d*r &3 f . or(r, (r — e (r', ) dt) ) (19)

4. Interpretation of the auxiliary fields

The auxiliary fields which appear in Hubbard-Stratonovich transformations are purely
mathematical constructions whose sole role is to facilitate a convenient integral represenation
of operator functions. In what follows we show that the above four fields are closely related
to the electromagnetic fields generated by the moving charges of the model.

Writing out a single time slice of the potential part of the one-electron propagator using
equations (17) and (19) gives us

f’v {0c. Ox, Ty, 0y) = exp (_At (UO‘)S‘.& (?’)Clr_csk (r))

where
ivg, Q —vg, —voy + ivey
(vo)(r)= —Sﬂ'z —uo‘ivj—c ive, _vg-ixv;cway vgz (20)
-0y - UTy Vo, 0 - Liveg
We see that this is simply
exp (— AT (ivoelyy, — Oy, - v0) cl €5, (21)
where vo = (voy, voy, vo;). We can now compare this to a single-particle Dirac
Hamiltonian Hp in the presence of scalar and vector potentials, Writing
Hp = (~icha - V + Bmc? —ecar A+ ed)
gives us
exp(—AT I;'D) = exp(—(—icha - V + ﬁmcl)At) exp(—{epl — ecar - A)AT). (22)

Hence we can immediately see the interpretation of the external fields as fields due to the
scalar and vector potentials. The first term in equation (21) is the straightforward Coulomb
propagation in an imaginary field. We see that vo, represents a scalar potential, e (r, t).
The second term is a ‘current’ propagation, and the components of the field wo represent
components of a vector potential (times the speed of light,) ecA(r,t). Thus we have
recovered a term in the propagator of similar form to j, A#, albeit with the scalar potential
having an imaginary value. The presence of this imaginary field can be traced back to the
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relativistic metric; normally the Coulomb part enters with the opposite sign to the Breit part.
Thus this representation suffers from the fact that the single-time-step propagator U/ (oy) is
not a Hermitian operator, and so in general we are not able to apply the techniques of
Hermitian matrices. ’

Prompted by the above observation we are lead to an attempt to interpret the argument
of the gaussian weight as the energy of free fields. To do this we note that the gaussian
weight term G (o) looks like '

-1 — 1 f 3. 33, f £ ; ’
—— U0 = —— d’r d°r oe(r,tyu(r —ro(r', 1) dt
2 2 o =0

which can be written as

1 B
—Ecr.:vcrc = —f vo (s, v~ s, sHve(s’, 1) di (23)
R =0

where vo(s, £) is defined as in equation (19) and v~ (s, 57) is the inverse operator of v(s, ).
Now, considering the identity

g2 2
Vair—r=Vi|{—— | =——8&0r-r) (24)
dmegir — 1’ &g

we have

2
e €
vry= ——V2 or v = ——%Vf. (25)
€0 [

Writing the argument of the gaussian weight as in equation (23) we see that schematically
it is of the form

1 1 -
—Ea'cvcrc = —3 Vo, (e—io) Vfucrc (26)

which on integrating by parts may be rewritten as

I €p
50V :,Esv,(vac)ﬁ. _ (27

Thus by putting ivo, = e¢ we see that this is just the —(€o/2)| V,¢}* term that appears in
the quantum electrodynamics (QED) expression below.

Recall now that in the Lorentz gauge the Feynman formulation of the QED expression
for the term exp((i/h) f L d3r dt), where L is the Lagrangian density, is given by [6]

S =exp ((i/k) f Ldr dt)
- . T Py 2
= [DoDa exp (%f dtz—o[+IV¢IZ+A2— (%)
t=0

3 (Y| g4 @
i Bx,- ) ’
Performing a Wick rotation to imaginary time, (iT /& = B8, it/h = 1) we obtain
Z = exp(—BH)

# €n . q} 2
= fD¢ DA exp dz > —|V|* — A% - (.C.)
T=0 .

Y (-3—“"1)2 —ippti-A @9
i 3JC,'
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where the ‘i’ comes from making the scalar potential ¢ imaginary in order to make the
integral converge. We thus see the direct similarity between the one-electron propagator
term in the HST {20) and the j - A —ip¢ term in QED, and the gaussian term in the HST and
the (€5/2)| V¢ |? term in QED. We note however that the HST produces no terms equivalent
to the ¢ and A terms that are present in the QED formulation. Clearly this is the consequence
of neglecting the effects of retardation. Although our Hamiltonian does not contain effects
such as vacuum polarization, we see that nonetheless the HST gives very similar physics
to QED. It is likely that if effects such as retardation and free photons are included in our
Hamiltonian (8) then full QED could be recovered. However, numerical work with such a
functional representation would not be so straight forward, so this possibility has not been
explored.

It is easy to show that making the time-independent saddle point approximation to the
functional integral in equation (19) yields the relativistic analogue to the Hartree equations—
that is, the self-consistent set of single-particle Dirac equations

(—icha + V + Bme? + edp — ecar -+ Ay = ey
where the 4-potential is given by

LN '
AR(r) = (¢ (r)/c, Alry) = EE CZ[ d*r’ M (30)

[r—=r]

Also, we find that by considering second-order fluctuations about the saddle point of the
functional integral we obtain the relativistic equivalent of the random phase approximation
(RPA), in an exactly analogous way tothat followed in the non-relativistic case [14).
Having identified the auxiliary fields with the scalar and vector potentials, we see that
there is a natural way to add in the effects of external potentials ¢*'(r) and A®(r), by
simply adding e¢™(r) to tvo,(r, t) and ec A® () to veor (7, #) in the one-electron propagator.

5. Monte Carlo calculation of ground state energy

Non-relativistically, following Sugiyama and Koonin [7], we use the usual projection
operator e## and operate it on a trial wavefunction |®). Then it is easy to show that
o|He 7|0
Ey= 11m E(B) = ———~—~———-~{ [ %) 310
o (0le-PH10)
We must adapt this relativistically, because of the presence of negative energy states. Thus
we consider the operation P(e—ﬂf" ), where the B- -operator removes all negative energy
states. This is equivalent to requiring that all negative energy states remain filled. Then,
®|HPePH|D
Eg= hm E(B) = _(..._.l__e__l_)__ - (32)
ﬁ—>°° (| Pe—PA|0)
Potentially there is a numerical problem here, since as § increases the negative energy
states will grow and swamp the positive ones in which we are interested. However, in our
calculations we find that we can still extract the positive states without problem. Far the
numerical simulations, it is in fact more convenient to consider a symmetric form of (32),
that is,
) D~ BDF Bt [} Pe—B/DH
Eo = lim E®) = lim {2 AP 1) (33)
f—oo Broo {@|Pe—FH | )
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and operate the time evolution operator for time 8/2 on each side of the determinant.

' 'We can now apply the relativistic HST as in equation (19). This gives us a one-electron
problem with four auxiliary fields. We choose as a trial determinant an antisymmetric
combination of solutions of the free Dirac equation, given by (13). To propagate these, we
perform the kinentic energy part of the propagation in reciprocal space, and the potential
energy part in real space. We can move between the two bases easily by the fast Fourier

- transform. The kinetic part is simple—we just write every one-electron wavefunction as a
sum of solutions of the free Dirac equation, and propagate each by its eigenvalue before
combining them back together. To do the potential part, we need to be able to deal with
the matrix vo(r) in equation (20) at every point in real space. To do this we split it into
its anti-Hermitian and Hermitian parts:

ivoy 0 —v0; —voy + ivoy

(vo) (r) = 0 ivo, —v0o, — voy Vo,
- —va, —voy + vy ive, 0
—vo, —ivay Vo, 0 vo,

ive, 0 0 0
0 ivg, O 0
0 0 ive. O
0 0 0 o

0 o v, ve, — ivoy
0 0 vo, + ivoy —u0,
- va, vo, — luoy 0 0 349
vo, + ivoy —ugy 0 0

The first (anti-Hermitian) part is simple to propagate with, since it is diagonal. This part
is equivalent to the usuval imaginary-field propagation in the non-relativistic method of
Silvestrelli, Baroni and Car [4]. The second {Hermitian) part is more difficult; to perform
it we need to know the eigenstates of the Hermitian matrix in equation (34).

Writing ¢; = vo; and |g| = (qf + qf. + qf)”z, we find that the normalized eigenvectors
of the Hermitian part of equation (34) are given by

- ( —ax+igy \ 1 _Q'x‘l‘l% \
oL | -l oL —1iql
209 — g:lgD'/* | —ax + gy S = | 4 —ia,
-lal R
( g+ igy \ ( —qx +igy 3
u3=————~—1——~———- gz + lqi s = 1 4: + Il
2(1g2 + g:lg)'? | —g= +1gy 20112+ g:lgy'2 | gz —igy
g+l / \ —%:—la| /
(3%
with the corresponding eigenvalues &1 = &4 = +ig|, &2 = &1 = —|gl. Hence we

can perform the Breit (Hermitian) part of the propagation by writing the four-component
wavefunction at every point in space in terms of these eigenvectors, and propagating with
the corresponding eigenvalue.

For sampling the auxiliary o-fields we use a technique similar to that of Silvestrelli
et al (4], Defining U () by equation (12), G(c;) by equation (19) and writing G(o) =
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G(o:)G (0, )G(0y)Glo,) we write

D(o) = Re{®|Tpps 5(0) P B U, 5/2(0) @)
_ Re{®|Uppp PLA Blpsppa(o)|®)

E{c)

" Re(®|Tpon p(0) B BT p1o(e)| D) (36)
_ Do) B
5@ = D@

where we also have removed the negative energy states as in equation (33). Applying the
HST to e## a5 given in equation (19) and substituting in (33) gives us

Ep =ﬂl_i>n;|° [(f Do G(o) [D(o)] E(O’)S(O‘)) /(f Do G(o) Do} S(a))] . 37

We see that from (37) we can now apply a Metropolis technique [8] to evaluate this ratio,
where the probability distribution is given by G(¢)|D{o)}|. We have the usual auxiliary-
field sign problem, since if {S(c}) & 0, when we average in the G(o}|D ()| probability
distribution the value of Eg will have a large statistical error.

We pick o-fields from the gaussian distribution by using the Box-Miiller method [14].
We then can propagate the trial determinant by these fields as in equations (12) and (19) in
order to find D{c)}, and carry out a Metropolis ratio test on [D ()| so that we successfuily
sample the probability distribution p{o)} = G(o}| D{c)}|.

As matters of technical details we record that we use periodic boundary conditions on
a box of length L (2 = L*) and expand everything in terms of its Fourier components.
Thus, the 1/r-potential for jellium becomes inside the box

2
o —r'y = — > 2 giste=)

where
2
g= T(n.n nyvnz) Mg, Ny, Nz € Z (38)

and we sum over all Fourier components except the constant (g = 0) term, since this is
removed by the positive background in jellium. We impose a cut-off in the numbers of
Fourier components considered; in the case of the following calculations we have used
27 (= 3%), 125 (= 5%) or 343 (= 7°) components.

Calculations were performed on a CRAY Y-MP8 supercomputer. However, the heavy
computational workload means that we are limited to small numbers of electrons—in this
case two only (one spin ‘up’, the other spin ‘down’).

For the numerical calculations we have used atomic units (au) chosen such that

n? et
—==] =] c=1
m 4reg
50 that
2 4
m € 1

= —@dmeég) =1 Ry = — = -

ao mez( 0) T 2 (Ame): 2

where ay and R are the Bohr radius and Rydberg constant respectively.

We have illustrated the method with a calculation for a two-electron repeated jellium
system at a density of r; = 0.0140 au where r; is given by the radius of the sphere that
on average contains one electron, that is %mf = §/N. Such an electron density has a
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Fermi velocity corresponding to S = vg/c¢ = hkg/mc = 1 so is well into the relativistic
régime. We have chosen to consider up to 343 Fourier components for the wavefunctions
and o-fields, and have used Trotter time slices of length 2.5 x 1076 au and 5'x 107% au.
We have chosen a trial wavefunction of an ‘up” and a ‘down’ electron situated at the T
point in reciprocal space. We have carried out calculations for both the non-relativistic and
refativistic jellium. The results are presented below in figures 1 and 2 for the basis sets of
343 and 125 plane waves respectively, in the form of a plot of energy per particle (minus
rest-mass energy) as given by equation (33) against 8. In these figures it is easy to see the
extent of the statistical error. In fact this error is almost entirely due to the fluctuations in
E(o) as defined in equation {36) since the average sign is very close to 1 for the whole
range of A used. )

D T T T T T
Non Relakivistic Calculation Fe—t
Relativistic caleculation H—
-10 F = exact NR result .
+ ' 3
7 Non~relativistic exact result
S -30 F = .
s
54
Y
<]
o -44 r -1
X
m
<
< -5Q & ‘l
_50 - -l
-70 |- -
re=0.0140 343 plane waves
-BG 1 | : 1 t
0 1 2 3 4 1 5

10~5 Beta /au

Figure 1. ArQMC caiculations of comrelation energy E; against £ for a two-electron system at
density rs = 0.0140, using a basis set of 343 plane waves. The 4-field representation of equation
(19) is used for the relativistic case, and the I-field representation in equation (11} is used for
the non-refativistic case. At = 2.5 x 10~ for the relativistic case, and At = 5.0 % 10~ for
the non-relativistic case.

In order to interpret our results we should like to be able to compare the relativistic
correlation energy with the non-relativistic correlation energy at the same value of r;. In
the case of two non-relativistic electrons, we are able to soive the Schridinger equation
numerically by writing

2m " 2m

and making the standard substitution R = ry +ro, 7 = 11 — rg, W(ry, r2) = ®(R)¢(r) to
give '

nr_, R’_, )
( v ——V,2+U(r1—r2)) W(r, rp) = E¥(r,r) (39)

2 - 2 ’
(—;Tn-(_ZVfg) - :—m(ZVf) + v(r)) S(R)¢(r) = E@(R)¢(r) (40)
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Figure 2. Relativistic AFQMC calculations of correlation energy E. against 8 for a two-electron
system at density r; = 0.0140, using a basis set of 125 plane waves and the 4-field representation
in equation (19). Az = 2.5 x 1076,

which is now separable. Numerical calculation of the solution to the r-part of this equation
leads to the ‘exact’ non-relativistic result. In figure 1 we show the exact result as calculated
in this way for ry = 0.0140 au, and also an equivalent non-relativistic auxiliary-field quantum
Monte Carlo caleulation using the technique of Silvestrelli et al [4], for a basis set containing
343 plane waves. Unfortunately, such separation of variables does not occur in the case of
the Dirac equation and hence we only have our Monte Carlo results to rely on.

6. Expleiting gauge freedom

Having identified the auxiliary fields with the scalar and vector potentials, we can exploit
gauge freedom to find a new representation, in particular one in which the auxiliary fields
are real.

In the propagator ﬁ’(cr), ag defined in equations (12} and (19), the effect of ivo.(r, t)
is identical to that of a scalar potential eg(r,?), and that of the field vo(r,t) =
(o (r, 1), voyu(r, t), vo,(r, 1)) is identical to that of a vector potential ecA(r,t). Hence
we can choose another scalar and vector potential pair which give rise to the same FE- and
B-fields and so will have an identical effect in the real-time calculation of the wavefunction,
In general, we can write such a gauge transformation as

¢new = ¢old _ % Arew Ao[d + VX (41)
where x(r, t) is any scalar function in space and time. This allows us to make the choice

x(r = f t ¢°%(r, ') df’

)
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o that
) t
" (r,1) =0 A" gy = AN+ | V(Y drf. (42)
r=0G
Hence we have eliminated the scalar potential term in the propagator, in favour of an addition
to the vector potential. It is important to realize that ¢ in the above is real time. To find the
representation in imaginary time (i.e. the density matrix} of exp(—i1H T /i) we must perform
a Wick rotation, that is 8 =1T/h, v = it/h. Thus 8/8t = (37/3¢) 0/t = (i/R)8/8T In
imaginary time and so
(1, 7) = go%r, 7) — - KL D)
B orT )
Hence eliminating an imaginary ¢ in the imaginary time propagalor requires a real x (r, T),
and so leads to a real A™¥. Thus we are able to find a representation which uses real fields
only.
Formally, we write the real-time evolution operator as

A 1) = AN, 1) + Vx(r, ). (43)

i~ T e 1o o o e a a s
exp (—EHT) = ¢Xp (_E f_o (T + 5 [pcvpc — PrUPx + PyUpy — pzvpz]) dt)
=

where g; are defined in equation (17) and
pivi(t) = f &Er P pilr, ol = a1, (44)
e’
‘We can now apply the usual relativistic HST given in equation (19} to give

exp (—%f} T) = f Do, Doy, Doy Dar é(ac)é(dx)é(ay)é(cz)

s oT
1 . n n LT a
X exp (—E f dt |: E e,-_x‘.azsl,a,-_,‘.f. + W00 — VO Py + 10Ty Py — vdzpz])
. .

=0 .8
where
~ li 3 3.7 T r '
G(o;) = exp 27 dar d°r o, v(r —ro(r, )y dr ). (45
re e=0
Now identifying ive, =-e¢°M, vo, = ecAM, v, = ecA‘J’,]d, vo, = ecA% and applying the
gauge transformation (42) we obtain :

e~ WMAT f Do, Do, Doy, Do, G(a0)G (e, )G(03,)G (o)

4

- T a )
X CXp {_El f 0 dr (Z Ez'..\'.'aif..\'. iy — [UUI(I) + Cf o E ivo, (1) dt’il Px
1=l t' =l

[RA

o3
+i [ucr\.(t) +¢ f — ivac(r"y dt’ | By
) v=0 0¥

=0

— [voz(t) + c[l il ivo,{t) dt'] ﬁz)} . (46)
=0 Bz

On performing the Wick rotation, 8 = iT/k, t = it/h, ' = it'/h, this leads us to the
representation of the density matrix as

e_‘”} = f Do, D&x Doy Do, G(o:}0(0.)G oy )G (5,)
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B
X exp {— f dr (Z e,-_xiaf‘_ﬁa,-_s,.
=0 i
T 3 9
- |:vox(r)+cfzf — vo (TNdT | Py
7'=0 dx _
T

d
+i |:vcr}. () +ch f — o (1’ )dr’] Dy
'=0 ay

. 5
- [vcrz(t) -+ ch f 3 vo(thdT’ 52)} . 47
=0 3z .

We denote the one-electron propagator in equation (47) by (o). We see that the scalar
potential (f.-term) has been eliminated and that the effective vector potential is real. This is
beneficial because it removes some of the problems associated with an imaginary auxiliary
field.

The non-relativistic generalization of this relativistic ¢ = 0 representation of the electric
and magnetic fields is actually equivalent to the representation used in the non-relativistic
case by Chang [11]. Although using the above representation leads to a single-electron
propagator U’(c) which contains a real 4-potential, the properties of such a representation
do not appear to be as convenient as the simple 4-field case described earlier in section
3 when we perform numerical calculations. In particular, the size of the correction to the
vector potential in equation (42), given by

!
A,y = V(r, ') dr’
t'=0

grows as N'/2 with increasing number of Trotter time steps N, and hence increases in
magnitude with increasing time. Also, since ¥V = ik in reciprocal space, the W¢ term in
equation (47) means that the coefficients of the large Fourier components of ¢ are enhanced
compared to the coefficients of the smaller Fourier components, leading to new fields which
oscillate more quickly in space than the fields in the 4-field representation given in equation
(19). Such a problem indicates that we may have to take a very large number of plane-wave
coefficients for our wavefunctions before we achieve convergence of E(f8) with increasing
number of plane waves. In fact, attempts at numerical calculations using the projection
method described in equations (31)—(33) show that we do indeed face such problems when
working numerically in the ¢ = 0 gauge. Numerical results for such a representation
are recorded in figures 3 and 4 for basis sets of 343 plane waves and 125 plane waves
respectively. The results are similar to those in figures 1 and 2 for the 4-field gauge.

Because of the form of E(8) given in equation {33) we can expect a curve of the form
E(f) = a(l —e™"), where a and & are constants {i.e. an exponential decay,) to fit the
data at large enough 8. In this way we can hope to extrapolate the results to 8 = oo in
a meaningful way. Indeed, for a basis set of just 27 plane waves, the etror bars are small
enough to allow a least-squares fit of this form to the data. These results are given in
figure 5, and show that the extrapolated values of E(8) as § — oo are similar for both the
4-field (equation (19}) and ¢ = O (equation {(47)) gauges described above. The discrepancy
between the two graphs can be put down to the small number of plane waves used. For
one particular point we have bricfly investigated the convergence of E(8) with Atr. In
fact we find that the value of At chosen for the graph is indeed small enough for any
errors due to its non-zero size to be smaller than the statistical errors obtained in the AFQMC
calculation. Unfortunately, increasing the number of plane waves used in the basis set leads
to an increase in the statistical fluctuations as illustrated in figures 1 to 4. Hence a such a
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Figure 3. Relativistic AFQMc calcuiations of correlation energy E; against 8 for a two-
electron system at density r; = 0.0140, using a basis set of 343 plane waves and the real-field
representation in equation (47). Az =2.5 x 107,

2 T T T T T
Relativistic Calculation F—

=30 F N } { -

10~3 E corr /au
]
=N
[=]
T
1

-60 | rs=0.0%L40an 125 plane waves -1

4 L L —

3
105 Beta /au

Figuré 4. Relativistic argMc calculations of comelation energy E. against 8 for a two-
electron system at density r; = 0.0140, using a basis set of 125 plane waves and the real-field
representation in equation (47). Ar = 2.5 x 10—,

direct comparison of the two gauges is not possible for a system deseribed by more plane
waves, Nevertheless, the results suggest that within the statistical error the two different
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gauges give the same results, as we should expect.
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Figure 5. Relativistic AFgmc calculations of correlation energy E. against g for a two-glectron
system at density »; = 0.0140, vsing a basis set of 27 plane waves and both the 4-field
representation in equation (19) and the real-ficld representation in equation (47). The points
have been extrapolated to 8 = co by considering a simple exponentail decay. At =2.5x 1076,

7. Discussion and conclusions

Firstly we wish to comment on the significance of the numerical results. We clearly see
from figure 1 that the non-relativistic and relativistic cases produce different resuits, with
the addition of relativity significantly lowering the ground-state energy. Statistical errors,
however, are large, and although both curves are beginning to tend to limits, in the refativistic
case there is a large degree of uncertainty. Calculations were performed for up to (typically)
5000 o-fields per point on the graph. The Monte Carlo acceptance rate was large in all
cases, being indicative of the small value of r. at which we are working. Calculations took
typically a few CRAY hours per point on the graphs. The Monte Carlo acceptance rate was
very close to unity for all the points, suggesting that a betier way of sampling the fields
exists, This possibility has not yet been explored,

We can compare these results with these of Ramana and Rajagopal [9], who have
calculated exchange—correlation energies for jellium using a ring-diagram approximation.
They obtain the resuit e, = —280 x 10~3 au, which compares with our Monte Carlo value
of € = —25(%5) x 107 au {for 343 plane waves,) where ¢, is the correlation energy per
particle. We see that we have recovered only of the order of one tenth the correlation of a
proper jellinm by using our repeated two-electron jellium. We believe that this is principally
a size effect, namely we would require many more electrons in order to obtain a sensible
value; at the present time this is not feasible due to the computer expense involved.

Secondly, we observe that the case of the fermion sign problem is more serious than-
in the non-relativistic case. Since the correlations of the system increase as r; is increased
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we expect the auxiliary-field method to perform less well at higher r,, due to the larger
fluctvations in the o-field needed to take into account the correlations. In fact, we find
that this is the case. However, the onset of the sign problem occurs at much smaller r; for
the relativistic case than for the non-relativistic case. Indeed, for r; = 4 (where relativistic
effects would be negligible) the relativistic method is unable to produce any meaningful
result due to the fermion sign problem, whereas the non-relativistic method works well. This
effect must be due to the presence of the three ‘vector potential’-like fields, oy, Ty, O,
whose net effect must average to zero in the non-relativistic régime but in fact produce
"large fluctuatons.

In short, we have generalized the HST to the relativistic case and have applied it in
a Monte Carlo calculation to a two-electron jellium system. Such a method is implicitly
exact, and removes the need for perturbation theory approximaticns, but is computationally
expensive. However, we have discovered that the HST provides a very natural representation
for the density matrix operator exp(—8H), closely related to Feynman’s formulation of QED.
This suggests that a search for more convenient auxiliary fields is unlikely to be successful.
We have found that gauge freedom allows us to generate any number of different auxiliary-
field representations. In particular, we have shown how the problematic imaginary scalar
field arising from the nataral 4-field representation of the density matrix can be eliminated
in favour of a real vector field. _
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